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+. ~ABSTRACT '-i

.

A general variational approach to study systems composed of

complex charged molecules is discussed. In this approach the variational

trial functions for the free energy functionals are constructed from the --

asymptotic limiting (AL) forms of the direct correlation functions.A

~number of examples are discussed, and in each case the variational form

.

~~of the direct correlation is given explicitely. The relation to.,

Onsager's procedure of immersing the system in an infinite conducting

fluid for obtaining an energy bound is discussed in detail,
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Introduction

Real fluids are composed of molecules that are objects of

complex geometries and charge distributions. In a previous

note I we have shown that, by studying the asymptotic high

density limit (AHDL) and the asymptotic strong coupling limit

(ASCL) one is able to reduce the problem of computing the

thermodynamics and correlation functions of the system to a

geometrical calculation involving overlap integrals between the

objects.

In previous work a simple geometrical, physically

intuitive meaning of the direct correlation functions (dcf) for

point charges in a background (as interactions between smeared

charges) and hard spheres (as overlap volumes) within the mean

spherical approximation (MSA) was given, thus also revealing its

anflytic structure. As a result, the above program can be

carried out completely for relatively simple systems (as e.g. the

4,5
general ionic mixture of the multicomponent plasmas5) using the

MSA free energy functional which interpolates between the exact

weak-(Debye-Huckel) and strong-("Onsager-type") coupling bounds

for the potential energy. Though featuring fewer "idealistic*"

features, in view of the higher complexity of the problem, this

approach was succesfuly used to analyze the "isotropic"-"nematic"
2,6

transition of line-charges and the coupling of the growth of

6
micelles to their degree of alignment In the present

. . . . . . . ~~~~ ~~~. . - .- . . ... : ., -- -. ,.,..



3

communication we extend these methods to a much larger class of

objects.

The proposed approach is to write down an approximate free

energy functional which has to be variational with respect to the

pair functions. These would be either the indirect 7 (hij(r1 2 ))
8 ,9 .or direct (i (r 2 )) correlation functions. In order to get a

convenient formalism, we have to use simple functions with

physically motivated coefficients. Indet4 the direct correlation

function in the asymptotic limits (AL = either AHDL, ASCL)

provides such a simple intructive basis.

The approximate solutions also provide exact bounds for the

free energy of system. In the present work we present a few

results for simple system.

In section 2 we discuss the Mean Spherical Approximation

(MSA) for hard core -Green function systems. The ASCL of the MSA

and Hyphernetted Chain (HNC) are.discussed in section 3. In

section 4 we give the general "Onsager" solution for the charge

smearing problem, which provides the basis - set functions for

the MSA-HNC-ASCL problem. The variational solution by expansion

in this set is discussed in section 5. Section 6 is devoted to

the discussion of the PT theory for hard objects, in parti~ular,

*. the scaling of the direct correlation function. An interesting

. application to bonding and aggregation within the MSA is given in

* section 7. Section 8 contains a general discussion and

conclusions.

oU

•U
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2. Mean Spherical Approximation for hard-core Green's function

systems

The general charged-hard-objects system to be considered

(and termed hard-core-Green's-function (HCGF) system) consists of

hard objects with imbedded charge distributions

, ,(2.1)

eG

where isVnormalized charge distribution of

multipolarity , associated with the Green's function (GF) G,

and o, is the corresponding coupling constant (-"charge"). In

this discrete representation for polydispersity, an object i of

relative concentration X-is considered distinct fron j if one of

the characterizations in the tuple i - (shape, size, orientation,

charge distribution) is different from that in J. In addition to

the hard-core repulsion, the pair interaction between two objects

-, j at a distance r is

c(2.2)

where

For example, a point monopole and a point dipole at the center of

an object are represented by K) 0 oG.:2

7.
. . . .



and (Y). O'Z ('7.&g). respectively. The Coulomb and

r~p--J* J a. ,r 3-  Ok'_r--;h1

screened-Coulomb potentials ( ,Q" /kt %&- ,.pL- 'l" /,1.'

respectively in three dimensions) are the GF for the I -

L.
and ;h..) Liouville operators. We use the following

notations: _ ' - total number density; 3- $ 5-

inverse temperature; overhead tildes denote Fourier transforms;

"det" denotes the determinant;
0

- dimensionality; \ - unit matrix C. ; C- matrix of

dcf's with elements A r.,'1 . 'r ' e T" :

total monopolar, G - type. eharge density; P- 0,1 according

the whether cG ( .:o) is finite (e.g. Yukawa) or infinite (e.g.

Coulomb).

The NSA equations are obtained from the Ornstein-Zernike

(OZ) relations between the direct correlation functions (dcf's) c- .

and paircorrelation functions (pcf's) +.C. -- .

(2.4)

and the closure relations:

:0 r .
I - _'.3 (2.5)

for the tnner hard core excluded region, and

r 7  ' (2.6)

C S

!I

. . .*
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in the outer hard core excluded regions. Cqs. (4) and (5) -,ay )e

replaced by the variational equations:

r,

-o (2. 7

that ensure the vanishing of the pair correlation functions

inside the exclusion region.

The MSA (or RPA) free energy functional. S - B+L is the sum

of the MSA energy (B + 1/2) and entropy (L - 1/2) functionals..

z~ ~~~~~~~ .8 " -£ ;,,: c£ 2s

2.9)

i.

2U

I
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Let F denote the value of I for P-0, i.e. for the hard

core system.Recall that represents the compressibility factor,

Z- pV/NkT

as obtained from the PY (i.e. MSA) equation for the hard core system,

via the relation [9,10]

-(1/2) (Z -l) (2.10)

where Z denotes Z as obtained from the compressibility equation of

state:

P/ n - C..(r-0) (2.11)

If f represents the excess free energy per particle in units of

kT and f - lim f , then the MSA approximation states that (10]

02

.

::f f 5 - . (2.12) +4

i ' 0

.........................................................................



for the equation of state obtained from the expression for the enerz:" v _

the system

u -U/NkT-1/2 n x X dr g (r) ) (2.13)

Central to our treatment below is the "Ewald" identity for any

function (Ewald function) e..(r) for which the Fourier transform G" (k)

exists [4,10]

1/2n x .dr g(r) 9.(r)/

1/2 nl jxzx \ dr e (s.)

1/2 (2r\)Ox.f jd k 4

1/2 ( x.x dk e. (k) S. (k)

(2./14)

where the structure factors S .(k) defined by

....................
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n (x x.) h..(k) (2.!5)

are related by the OZ relations (2.4) to the the dcf's through the

matrix relation

S (I - C ) (2. 16)

Recalling the compressibility EOS obtained from

,<P/ n) =l-nIx Yd C.. (r) (2.1-7)

then, using (2.13) and (2.14) with S..(r)- C.,(r) we obtain

LI-

u- B[C3 +1/2+1/2 n x j. r g.d(r) CC. (r) (r)

Li 
(2.18)

...............................................



u- (C] +1/2 (2.19)

fom which (2.11) is obtained for systems of hard core objects upon

setting u =0.

Finally note that when the total monopolar charge of the system

is not zero we need , in the case when (k-0)-0 (e.g.the Coulomb a

to introduce a compensating background charge density which is uniform

1hJ all space, i.e. it penetrates the hard objects..The background

density is equal to -pr . The potential energy of the system

including the background is given by

U/NkT=./2 n X. X h (r)  (r) (2.20)
1. Jdr h.(r p

The general expression for p +/ n) is thus given by

3 P/ 1- n xx. C(r + (r3

(2.21)

while the functional B is written asi::1
_ ..-....-. ....... : -- .-:. :., :.. ..:. -:. .,: , - ' " " -"- - --- --- ---



2 "
3[C =-/2 n r C (r .... . -=,

(2.22)

The sum over orientations, implicit in x x. ensures that for the

HCGF systems

x xx. r'r (r) -o (2.23)

whetnever total monopolar charge neutrality is preserved.In view of this

(see 3.11) below), (2.20)-(2.22) contain (2.8),(2.13) and (2.17) as

special cases.

-I

......................-. ,.....-.-..-.-<'.. .. "."',



a) Diagonalizatioi of the variational. free energy

3
A strong coupling (SC, superscript ~C)limit for the ?ISA

is reached when either the hard-core compressibility tends to

zero. or when any of the coupling constants (the charges) tend to

infinity -so that the free energy is dominant by the energy term,

-B. In either case the dcf's diverge *and in order to

Satisfy the non-negativity of the argument of the logarithm in L,

the diverging dcf's satisfy3'

(3.1)

In view of the closure (2.6) which servers as a boundary

* condit-ion for the GF-potential (2.2; 2.3) these relations can be

satisfied only by the following convolution type forms

* C .Q1ucons tan t g L*U)for hard core SC (3.3)

C*k 14~9~' for charge SC (3.4)

where SC denotes strong coupling.

The normalized "smearing'" distributi:: .

are confined to the volume of the hard object i or its surface

and must Satisfy the MSA "boundary condition" (4). For (3.4) we

specifically consider the new ("smeared" as opposed to smearing)



coupling constant such.,

interaction between bbjects: -'Id y

(3.5)

will satisfy the MSA boundary condition (2.6), ncUely

(3.6)

Using (3.3) and (3.4) we now consider the strong coupling

MSA problem, which may be posed separately for each diverging

component- i.e. either hard core SC or the SC limit of any of che

independent coupling consanIs q

Inserting (3.3) into a [ 4=0 we find a direc

generalization of the hard-spheres result , namely that the MSA

hard-core EOS diverges when the total packing fraction,

(volume of objects/volume of system) 1 with the dcf's

satisfying

(3.7)

overlap volume of objects i and j with separation r divided by

the overlap veluieat zero separation.

. ........ ......... , . .-



In view of the additivity of the total interaction potential

Lein terms of the independent "charges". we consider at once the!

:-. most general case of strong coupling of all charges, although as
Sstated above, each may be considered separately. '

Inserting (3.4) into the SC-MSA functional 3 [C " ] we .'

y'e

obtain the Onsager-typI4 expression for the lower bound for _

the true potential energy of the system, given by (for reasons

given below we prefer the "smeared" new charges at or e

This is choice of convenience and using either gives identical

results).

C(3.8)

sa , eac y be c1ns ded s ep rae

n(on n(3.9)

The first (monpolar) term in (,) an Onsager background term,

-..', vanishes for globally neutral systems g e by f0 or The

second term is minus the self energy of the "smeared" charge

/ ?i: ... ...". .. .. ... ...-...'... ..(3 . 8 )

! -, .. . ... , , . . . , ., .. . , , . .' . .(..7.- . .., ', . .- , . , . . . : : . . . .. - ., - . - • ... . , ,.S
. _ ..... .._ ." ..... : : , t- , " " . ' -" " " I I'
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distribution. Note the decoupling of all the components in

(3.8), which is typical1 6 to the Onsazr best bound scheme and

is analogous to the diagonalization of the Hamiltonian (sec Sec.

V). The new "diagonal" MSA problem

e~ c,C"3

( G Q (3.10)

becomes an electrostatics problem of findin& the oDtimal Onsager

"smeared" distributions. 'he derivation os Q) 3 (9) is marie

transoarent in (b) below.

Even though a comprehensive analysis of the HNC theory for

hard objects is the asymptotic strong coupling limit (ASCL) has

not been performed yet, the charge strong coupling limit of the
p

HNC can be shown to be identical to that of the MSA. Thus, the

results (3.8 ) and (3.10) are equally valid for both HNC and MSA,

and the corresponding "best bound" problem. which as we show in

the next section has been solved already by Onsager. many years

"* ago, provides the ASCL for charge strong coupling for both HNC

and MSA.

....................................

.................... ... . .* -°



4.

(b) The Ewald identity and the Onsager Process

Considering the Ewald identity (2.14), notice that electrostatic

interactions between charged particles, namely (r) or J.(r) of (3.6),

are legitimate Ewald functions eG.(r). The left hand side (l.h.s.) .

of (2.14)is correpondingly the total pair interaction potential energy

per particle, of the objects carrying the original charge distributions

W (x) and the smeared charge dstributions jo (x). The first term on the

right hand side (r.h.s.) of (2.14) vanishes .for an electrically neutra-

system (2 x. q=0 ), since

x.x. dr (r) - lim x.x. q q". (k) (k)

li (4n qn. (kj) (k) 0 (3.11)

and similarly for 2x z (r) .'(k) is the FT of the GF potential

(e.g. Coulomb).The second term of the r.h.s. of (2.14)is easily

recognized to be minus the self energy of the charge distributions, so
that the last term of the r.h.s. of (2.14) represents the total

* electrostatic energy (per particle) of the system of charged objects:

l/ 2(2 )4x ~)Jdk S. (k){ l/ Ou~d >0 (3.12)

*i whereW >0 is the surface of a D-dimensional unit sphere, E and E are
o

.. ... .. ... .. ......,...-.-..,_. ..._ : ." .-.: .:,. - ..'.. -..'-.. .".. . . .....-. .-.. . . . . . . .... . . . . . . . . . . .... . ,".. . . ". ". . ..' " n. " . -.
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V -- e ,N/V-n). ,"

The Onsager process £113 is equivalent to adding and substract:.rn

the total electrostatic energy of the smeared charge distributions, and

rearranging terms.Using (2.14), it is equivalent to the following Ewald

identity (see Fig. 1 ):

U/N- U/N- U IN) + U /N

(3.13a)

i.e.

1/2 n XK fdr g.(r) i(r)= 1/2 n xX Jx d gC(r)

+ /22 )~xfdk S.(k) X. '-.' ~ -

-'" (3.13b)

For hard core Green's function systems (HCGF) (2.5) is exact, so

• "that due to (3.6) the first term on the r.h.s. of (3.13b) vanishes.By

(3.12)the second term of the r.h.s. of (3.13b) is non-negative, so that

* the Onsager type bound is obtained:

U/N > -1/2 c.x (r-O) -x U. (3.14)

where u. is the self energy of the smeared charge distribution qf('

..



arbitrary N (nuber of ozec:s) crov:ed :'a,: :e elec:rc-... ....

preserved."b

Returning to the SC-MSA problem, and denoting by "overbars" the

optimized quantities obtained from the solutions of (3.10), Ve final',, -

get:

i) The SC-MSA result is an exact lower bound to the potential

energy of the system,

U/N> (U/N ) u -1/p BCC (3.15)

- Onsager Bound,despite the approximate nature of -e

MSA free energy

ii) The SC-MSA dcf's are given by 1/? C (r) = (r) =
P.-.

the interaction between the optimally smeared charges in objects

± and J of separation r

(3.16)

Note that as stated in "words", namely in terms of the basic

characteristics of the interactions, our simple expressions (3.15) and

(3.16), uncover the MSA meaning for arbitrary dimensionality.

When there is a background (3.14) takes the form

kU
,.- - - .. - -" . -' ,-'' ... . . . .~ .-*, ". ' . . . . . . . a- - n- -~ i -



.. ,. - -

-/ X,(r=O) (2.17)

Note however that the second term of the r.h.s., which represents

the difference of the interaction energies of the smeared charges and

the original charges with the uniform background, is also

diagonal.Indeed, we may write ((featuring, in full i-,i, ,G)

1/2 n xx fdr [1,(r)- (r):

-1/2 n x. q. q lim [ k~ (k) Ic- (k) - k] k

'x jo .G 0, G F G t -

- li,, ))( (k)

-/2 fd/q fdr C i(r)- (r)]

jA (3.18)

and we recall that p(k-O)-5? (k-O)-l.

Comparison with (3.9) shows that the MSA or HNC liquid theories,

dictate that the smeared system, represented by U /N in (3.13a) and

discarded in obtaining U /N , should be charge neutral also when

(k-0) 40 .That is the reason for in (3.9) when (k-O)- 0 and we

formally do not need to introduce the uniform background, since the

-iI



7nsager przcess, i-:-ates -a, :-.e -.-._are' ys-e --. .

uniform Backgroun nd thus be totally charge neutral. Since U IS

discarded in the MSA-Onsager estimate of the potential energy of the

given system, it can be expected to be relativley small only for a

totally charge neutral system. I

N

. . ........

.. . . . . . . . . . . . . . . . . . . . . .. . . . . . .



4."Onsager Solution" of the MSA or HNC for Charge Strong Coupling

In his classic paper of 1939, Onsager (11] considered the problem

of obtaining a lower bound to the potential energy of a system of

charged hard objects. His method of solution is consistent with the MSA

boundary condition (3.6) and, in fact, provides the solution of the ASC...

for both the HNC and MSA (3.10).We consider in this section the Coulomb

potential,to avoid the complications and specifice details of other GF

potentials, to which the treatment also applies.This will allow us to

use elementary electrostatics in 3 dimensions.We discuss

electrically neutral systems, -0, in the first place, then systems

that are not electrically neutral, and therefore require a neutralizing

background for thermodynamic stability and at the end of this section we

give examples for the special case of centrally charged hard spheres.

a) Total Charge Neutrality ,

There are, in general, an infinfite number of ways to replace the

charge distribution of an obJectP (x) by a smeared distribution

with the same potential outside of the object. The most obvious ones are

* those associated with the spherically symmetric distribution (ix!)

* which by Gauss's theoreu satisfy the required boundary condition

(3.6).There is , however only one surface distribution (x)

which satisfies (3.6). This surface distribution is the one

corresponding to minus the induced charge on the surface of the objects

when the system is immersed in a uniform conducting fluid, as origina2ll"..

proposed by Onsager. As is discussed below in a special case, this

II

ii ~ ~ ~ ~ * *..-. . . .. , .- _ •, ,-*. ..*,. l .



From this solution we ccmnute :-_e componen: of the eIe:=-L: -

normal to the surface of the object, and just inside that surface

(S) -7 ; (x).n (4.7)

I..

The induced charge on the surface of the object is given by

(4 8

The Onsager solution for the optimal smeared charge distrib'-

S(X) is

JO (X) =-c*. (S) (4 .9)
Li

Onsager's original bound to the potential energy of the systsm

was given [11] in terms of the total potential energy of the "Onsager

objects",namely the neutral objects consisting of the original charges

*g (x) plus the surface induced charges induced by them, 6 (s). It is

easy to show that this energy is equal to minus the self energy of the

surface charge distributions-

U, u 'rf~ (s) d'(s) +12 fd (S) a'(s) (4.10)

$ S

from (4.4) ,however we obtain

J



•~ ~ ~ ~~~~~~~~~ ....,. ..1 ..! . p  ., ,. .,. . , .,',' z;'.. " . .. .

s (s) 5(s) = -(self energy of -.- e surface :-arce

distribution d(s)) (4.;)

-

In order to get some feeling for the optimization of P (x)

obtained by the surface distribution,consider the special case

+.o(s)=.c-constant (e.g) a point monopole at the center of a sphere)"

The interior potential is given by ,(x)- t(x)-c., i.e.
(x)--C,th lectric field inside the object due to the surface charge

is zero, E =O.Outsidehe objec~we still have from (4.6) that

E -=E .The general conditionfor the validity of (3.6)is that the field

outside the object due to the smeared charge is the'same as that due to

the original charge,

- =E (4.12)

The self energy of the smeared charge distribution i given by

u. =1/2 ~.(r-0) -1/81T fdVI (E)I
I.i

in/8I +dVV(E,) I +1/SW dVI(E)

The absolute minimum for this quantity is reached whenKE')

which in the case considered above is obtained by the Onsager

solution with E.-. for . (s)- constant.

. ... . . .
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The Onsager procedure for the MSA-HNC best bound problem of

immersing the system in a uniform conducting fluid,works well when "-here

is a neutralizing background.The r-ager object now consists of the

original charge distribution p (x), the uniform background density

"trapped" inside the object,P =-PT6 , and the induced charge on the

surface due both tofc and .Eq. (4.1) now takes the form

,P• b

i ()-T,(x) -411p (.4

with the condition (4.2). Denoting by (X) the solution of

6 0.

*'(x) =4 pinside object

7 (x) =0 outside object 4.15)

with the condition that (x-.o)-O, we use (x) as defined prior to

(4.3) to solve (4.3) with the boundary condition

to get

....................... .... -. .. (.17)

. . . .." . . . " , - • . . , . . . , , . . .
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() =0 -

Thus (X) , ( and - (X) are, respectively, the electrostat:

potentials due to o) ,p and 0r (s) in the Onsager object. Let us

denote by o the original fixed charge of the object,by b the backgrou;nd

charge and by s the surface charge, and ob,os,bs,bb,ss,..the

electrostatic energies between those charge distributions .bb and ss are

the self energies of the distributions 9  and " (s).It is easy to see

that (3.18) may be written , in the case of Onsager smearing as

1/, xJr (r)- ( r) 2x(bo+2bb+bs). 4.9.1.

while the first term in (3.17), the self energy term of the components

in % . ,is

-1/2 x. (r-O) --7 .(ss* bb+bs). (4.20)

thus , (3.17) takes the form (see Appendix B)

u/N >(U/N) -- x (s-bb-bo). (4.21)

."

[ ! .. ... _ ..



Consider, in turn the total energy of the Onsager object

(relative, as usual to the self energy of

a sje r
U -(bs+bb+ss+bo+os). (4.22)

It easy to see from (4.16) that

bs+os--2ss (4.23)

*" so that (4.21) becomes identical to

U/N >(U/N) X. xu. (4.24)
- o~'~5 o-, ,ri

Thus, when there is a background, the Onsager solution for the

optimal smeared charges is

(X) (S) (4.25)

(c) 9pecial Case: hard spherical centrally charged objects.

The most general system for which a formal solution to the NSA

has been found consist of hard spheres of arbitrary sizes with

central point multipolar charges, for which the solution

to the MSA-HNCASCL problem (3.10) can be summarized by

the following simple statement (see Appendix C):

N q

,- -. A



All multipolar charges, > 1, shoull be uniformly smeared on

the surface of the sphere. The monopolar charge, ,shou-'

be smeared uniformly on the surface and/or uniformly in the

volume of the sphere according to whether , 3 Or

respectively.

All the analytic solutions of the MSA for HCGF systems, that

are known to us, including hard spheres 12 '13  hard spheres with

14
centrally imbedded point monopolar charge (with and without

background5 ))hard spheres with centrally imbedded dipoles 1 6 and

17 18multipoles mixtures of charged hard spheres with point ions

19
hard spheres with monopolar Yukawa charges 1 , obey our relations

3.'), ( . I') and . with the analytic forms given by ( -K), . V2)

maintaining it at all densities and temperatures (couplings).

N

,I

............................................................................................
......................................................



5. Variational olutions of the MSA by xpansion in the Onsager

"Rasis Functions".

(a) Analogy with the Hamiltonian variational problem.

A typical liquid state calculation involves a (usually

approximate) free energy functional which has to be variational

with respect to the palt functions. In analogy to the

Hamiltonian ( free energy) ground state energy problem, the

following "ideal" situation is desirable:

(i) To have a physically motivated. good choice, of a set of

basis "wave" functions ( pair functions) which obey all the

symmetries of the "hamiltonian" ( + geometry of the

object and the charge distributions); so that (ii) the pair

functions could be expanded in terms of the basis set, with only

the coefficients (which can be assigned intuitive physical

meaning) to be determine~by the variational free energy. A

minimun set of coefficients must still involve the geometry of

the objects and the values of the charges (iii). Eventually

increasing the size of the" basis set (the number of

coefficients), more accurate solutions can be obtained.The exact

solution is 'eached when the complete set of basis functions is

involved.In general, however,a small number of coefficients will

be required.

(iv)As in the Hamiltonian problem it is desirable to obtain

from the aD roximat expansion and exact bound to the energy of

the system.

° . . . . . . * ... :. . . . . . . , .... . . . . . . . . . . . . . .



The general idea of solving the variational MSA problem by

using a trial dcf with coefficients to be determined by the

variation equations in certainly not new. Ne.er before we had,

however, at our disposal the complete set of basis functions as

we now have due to the mapping of the ASCL-MSA on the Onsager

scheme, which provides the exact analytic form of the MSA dcf's.

With trial dcf's having the exact analytic form of the full MSA

solution it is only a method of employing the full set of

required coefficients (i.e. expanding the solution in the

complete set) in order to have, from the variational equations

for the coefficients, the exact solution of the MSA. The Onsager

basis set of functions, constructed by (3.12) using the Onsager

"' smeared charges, (i) h"j a physicaly intuitive meaning, (ii)

corresponds to an exact lower bound to the potential energy, and

(iii) is constructed by using elementary electrostatics

employing the basic geometrical-physical constraints that must be

taken into account - the liquid state theory part of the problem

* does not make the problem more complex than it already is at the

basic electrostatic level. Even if we "stick" to the full basis

set, and attempt an exact solution, this procedure has the clear

advantage of providing a direct physical description of the

solution.

We may, however, with increasing experience, use only those

elements of the basis set which are more important. The

conceptual analogy with the widely used Hamiltonian variational

solutions is complete.

. . . . . . .. . .... .. . . .. . . . . . . . . ..-..............."".,... :.....................................',..
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(b) Practical 'etails: Examples and Comments.

The complete basis set of functions for the MSA consist of the

overlap-volume functions (3.7) and the Onsager-smeared

interactions (3.16). Recall that the MSA dcf's outsice the cores

are already specified by the closures (2.6), so that without

further mention it is understood that only the region inside the

COre enters into the discussion.

Example(bl): restricted primitive modet(RPM).

The RPM consists of a binary mixture of equal size and opposite>.;

charged spheres. The overlaps volume function is of the formLl

Chc(x) = A + A x + A3 x < (5.1)

The Onsager-smeared interactions between two uniformly surface

charged spheres is of the form'S.15-

CiJOnag r(x) QiQj(B o + B2x), x < 1 (5.2)

The exact trial solution is of the form:

• • ;(5.3)

Symmetry considerations will reduce the Ct;a[ number of

independent coefficients.

. Example(b2): charged hard spheres in uniform background.

The Onsager-smeared interactions are of the form: ,'LN9,

--.- ; --. " :; -.:::.;. . .... . ..-.-.'.... . . . . ..- " .--- -: , " , :- , ' " -( : : ". .I - . . . .



This happens in general onlY for hard spheres and for hard

alligned ellipsoids. In these cases; the ASCL solution has the

same analytic form as required of the PYHS theory at low

densities. In the general case, however, the ASCL solution of

the PYHS and the low density solution may have different forms,

so that the overlap-volume basis set (3.7) will not be able to

provide the exact solution at low packing fractions. As an

ad-hoc tentative practical solution to this problem, we suggest

to employ as a hard-core basis set the union, of the set (3.7) and

the overlap-volumes of shapes corresponding to the pair-excluded

regions, i.e.

3,. (5.6)

Comment(bi): A method due to Percus.

Once the exact analytic form of the dcf's is given, an

alternative to the variational solution in provided by the simple

and powerful method of Percusv- . Use the OZ relations to expand

- the dcf's around the origin (=o With the known analytic form

of the solution this will provide the set of Algebraic equations

for the coefficients. i.e. a complete analytic solutions without

resort to the factorization techniques

6. Approximations within the PY theory for hard-objects.

The formulation in secs. 1,2 holds also for uncharged hard

objects in the PY approximation. The main points to note is that

°
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has a ther - i: meaning 2 \,.L,,

The analogy, pointed out by Onsager, between a mixture of

particles of different orientations and a mixture of hard spheres

of diffrent sizes, is born out manisfestly in our formulation.

In the asymptotic strong coupling limit we predict the following

results for arbitrarily shaped convex hard objects: divergence

at ZT -1 , (3.7), and (3.1), (3.2).

Consider now the following general approximation,

C&) 0..-.(I

by which the generating functional Zc takes the following

("diagonalized") form:

A to be solved via

In the limiting case when all objects are equal size spheres,

eqs. (6..), (6.3) reduce to the exact PY equation for 'ard

spheres.

. . . ... . . .
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solution to the PY equation can be jubgedby D e.g, c-.3:-.

with the available exact solution for hard sphere mixtures for a

binary mixture, (6.1) leads to the following relation among the

partial structure factors:

ThiC (6. 4)

This relation holds well only for mixtures of spheres with
r

relatively small size differences. The Pynn-Lado 21,22 ansatz

namely

C., c>" = Co ( \r ...
. Ert(6 5)

whcre C C ,r/R) is the solution of the PV approximation for equal

size spheres,manifestlv violates the overlap-volume analytic form
for uneaual size spheres (e.a. compare (5.1) with (5.5)), and so cannot

be expected to be accurate for mixtures with large differences in particle'-

sizes. Lado's numerical results are encouraging to pursue this

ULne of scaling type approximation. It would have been of

interest to compo.re the results of (6.5) to those obtained from i. \'

Note that (6.3) is an exact ASCL result, so that ((..)

oL £ - -e\ t..i_ exact results for the PY theory near

the ? limit:
T•

't D (6. )"

It is interesting to observe that the most sucessful theories for

the EOS of mixtures of hard spheres or non-spherical hard

objects, like thQ Y-expansion and the scaled particle theory,

imPlicitly assume (6.G ) or its corresponding "virial" PY-EOS:
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7. Bondina and ARRregation within the MSA and HNC

A2oroximations.

One of the aims of Onsager 's paper was to investigate

simplified electrostatic metals of bonding and aggregation. The

mapping of Onsager's procedure on the ASCL of integral equation

theories of fluids, enables us to take a further step in the

direction pointed out by Onsager.

Since the Onsager bounds correspond to the exact ASCL result

of the HNC and MSA theories, it is possible to compare the

Onsager bounds with the potential energy of different possible

- structures. To the extent that the Onsager energies correspond

- to a unique local structure,they may predict the bonding and

aggregation effects within these integral equation theories in

- strong coupling, without the need fora detailed solution of those

*J complex equations.

To illustrate this idea, consider a binary mixture of hard

particles of, say, different sizes, with opposite charges

situated inside the particles just off the surface.

Specifically, let & be the distance of each charge from its

surface boundary, and let , 1 where

* are typical dimensions of the particles. The Onsager self energy

for each such object with charge Q (or-Q) the surface is

00.

U 1, LI ( 7 . 1i )
"A
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This is equal, however, to the potential energy of the two

oppositely charged objects when they are forming a "molecule",

with the equal and opposite charges are at distance 2.

from the other (Fig. aa). Note that this is a unique local

structure corresponding t o (7.1), and thus we are able to

predict that the HNC and MSA theories will feature this bonding

effect when /X 8 P

This simple example ca: be generalized to local structures

of higher complexity (e.g. Fig. 2.b) and to include polarization

and other interMal electrostatic effects that lead to aggregare

formation. The treatment of polarization in Onsager's paper can

be readily incorporated into the mapping on the integral equation

theories. It may be thus possible to consider complex structures

as rings, water etc. Although the possible aggregates that

compl with Onsager's bounds do not always represent a unique

local structure (e.g. charges near the centers of t~e objects)

they should be of help in the analysis along the lines set by

Onsager's work, which -in view of oiV analysis- it is now

possible to pursue.

".
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8. Further Implications and Conclusions

The physically intuitive meaning of the dcf's and its role in a

variational solution of the MSA -HNC type equations by expansion in the

"Onsager basis set" , is not limited to uniform systems. It is a

standard procedure [273, in the treatment of a system of hard particles

near a neutral or charged wall (e.g. fluid near an electrode), to

consider a mixture of different size particles and to let one radius =o

to infinity.This one particle represents the hard wall.In such a

limiting process, done in the context of a specific approximation, s-.=

as the MSA or HNC preserves the fundamental form of the various dcf's

(particle-particle,particle-wall) retains its intuitive meaning as

overlap volumes or smeared interactions, and the procedures, as

discussed in this paper, can be carried out in complete analogy to the

uniform fluid case.Work along these lines is currently under way.

The Onsager procedure in conjugation with the Ewald identity

serves as a guideline for the solution of the ASCL of th HNC or MSA

equations for systems of concentrated charges without hard cores,

e.g. plasmas , line charges, etc.(namely, the soft-MSA context,J2,3,61)

It provides the rationale for the emergence of the "ion-sphere"

boundary conditions in the treatment of high density electrons+ions

matter [3b].The insight we gain from te general HNC-MSA problem for

* HCGF systems may be used also in constructing analytic solutions for -
-J

centrally charged spheres for non-uniform systems .Examples of such

solutions are currently under investigation.

Our novel method applies to models of matter of a wide variety,

~~~~~..'....- .'._....-. ..- '....... ..... ........ .. . .- - - -



approach wJ motivate more appi~caticns.
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Appendix A: Restricted Primitive Model (RPM) of electrolytes.

The RPM consist of a mixture of charged hard spheres of

equal sizes, and obeys total charge neutrality Z. &.O The

MSA for this model has been solved exactly to give the following

dcf 's:

where B has the property

(A.2)

and C (r) is the PYHS result for equal size spheres of diameter

In the limit o we have

T- 4. - •

-------- (A.3)

where kt¢) is the electrostatic interaction between two

uniformly surface charged spheres.

P.I
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. Appendix B: Charged hard spheres iA uniform penetrating

background

Defining /b , T - , and taking the

limit '-Z! for fixed tt% , the solution of Palmer and

Weeks (PW) takes the form:

"- Note that U i can be written as

where

(8.3)

(B.4)

(B. 5

These functions are, respectively, the volume-volume,

surface-surface, and volume-surface, electrostatic interactions

between two spheres of unit diameters, each composed of charge

between



(1-) spread uniformly on the surface, and charge p spread uniformly
in the volume.The Onsager object consists of the negative of these

" charges plus the original central unit point charge.Using ('=l) the.1.

definitions of sec. (4.b)

ss-(

bb=6/5 rL

bo=-3rL

os--2 (l-r

bs-2r (l-rL) (B6)

-* we find that , in accordance with the results of section (4.b) the

internal energy is

(U/N) --(l+r - ( V --ss+bb+bo (B7)

* in agreement with the result obtained by direct integration of (3.17).

Appendix C : Onsager Solution for Hard Spheres with Centrally Imbedded

Point Multipoles.

.. . . .. . . .. . . . . ,



•7 -% I. I. pYV 7 r -.:

Appendix C Onsager Solution for Hard Spheres with Centrally rMbedded

Point Multipoles.

Consider a sphere of radius R with a centrally imbedded multipole

*" of order 1 .The potential due to the central charges is

We solve the equation 4 =0 inside the sphere with the bo..ndary

condition (R)--o (R) (see Sec.4).The solution for the interior .s

r (C2)

*. where

A - R (C3)

The potential inside the sphere is

(r)- 4T Y (ej)(r -r R (C4)

The normal component of the electric field on the inside surface

of the sphere is

E (R) 4 q Y (91 j R (C5)
A-

-(2t.+l)/(f+l) E A(R)
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density

d R) =E (R)I4V (- (C6 )

satisfies the charge neutrality condition

Jd'r Y (e, (r) r -q (C7)

It is easy to see that the result (C5) is equivalent to a u-;izr7-.

spread of the multipole on the sphere.In the case of.a sphere with a

point dipole p in the center (pointing in the direction of z), we have

(R) =-3p cos 0/4wR (C8)

o7,

I / I
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The MSA for the ion-dipole mixture was solved some years

ago 2 '2 . Although the unequal size case was discussed a

complete solution of this model is szill not at hand.

Our present method, however, allows us to construct the DCF

in the ASDL from purely electrostatic calculation consider first

the most general case of two spheres of radii b1 and b2 and cIarge

distributions 'KC.,'. The center to center distance is

- The interaction energy is

(D. )

Assume first that bl>b 2 . Then we can write (D1) in the form

1 2

~* . . * t % ;...- -



-D 2)

'.

I.

I,.

where c, .,r) is the potential due to the charge smeared on the

surface of sphere 1.

SI -D 3

now for multipolar charge distributions on the surface of the

sphere we have

c~S~ C D. 4

in a laboratory fixed reference frame. - (kbo,6,bis a vector

pointing to the direction LO in a

reference frame fixed to molecule i. is the value of the

multipole moment of order m, polarization'. We use Edmonds

notation for. the Wigner spherical harmonics

L4Ir

~~I )g ('

We adopt a reference frame in which the z-axis is the r vector.

Then

..................... . . -
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I ID

(D.6)

where now , is the dire:riio it a molecular reference frame

and the 5\Aer angles J, - , , give the orientations ofi

molecule I in this frame. (Thoosing the origin of the coordinates

at the center of I we writ- (D.3) in the form

/- k -- 2 (D.7).

with

-A. -(D.8)

We expand now the last factor: Indeed we will have two cases

' Region outside I

Region inside 1

we get

I''~ 4K -' (D.9)

D .
7-
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Lit,

'AA- A Y) (D.11)

so that finally

21L
,'i W i (D. 12)

with

, ~VN e .

(D. 14)

where

(D.15)

T L)a .% x. \ f , ..

OkC

, A-

coo . ,, . . -",
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where the angle ) . x is defined by U.

(D. 17r .,

The evaluation of the integrals (D.15) (D.16) is straight

forward. We quote the results for m, n-O,1.

Ion-ion interaction

00 L"Lto aL r

This form agrees exactly with the ASCL of that given by Hiroike 2 6

"Vhen ,=:to,. , then we get

00"22

in agreement with knowm result (A3) F r "ol o%^ a Lee_ c.s._

* and finally the dipole-dipole

00

(. - Ir o4 - ) 6 +.'"

C J
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Ewald Cdk -t 4 k. P- ) we add and subst racr. the energy of exactly i

the same system as the original but with the Onsager smeared

charges replacing the original charges (see the text) -

004

,- . .

CQ C
2i : Bonding and Aggregation (see the text)
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C 4 AA~x..'4e_ I
(5.4)

which is view of (5.1) is also the form of the exact trial

function.

Example(b3): hard spheres will imbebbed monopoles and

dipoles.

For unequal size spheres, the overlap value function has the form

(with r - :L -

iL

;k 4 r .
The Onsager smeared functions are given in Appendix D. when

forming the trial dcf's we keep the angular dependence and attach

coefficients to the radial part of each function. Compare w Lth

Wertheim solution. L",

Comment(b4): overlap-spheres and pair-excluded volumes for

hard objects.

At low densities, at the 2nd virial level of approximation, the

hard-core dcf is given by the overlap-volume of two objects

having the shape of the pair excluded volume between the two

a- relevant particles. As long as the pair excluded volume has the

same shape as the two hard particles, then the two kinds of

overlap volumes mentioned above have the same analytic form.

" . . . .
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